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Abstract 
Object appearance modeling is crucial for tracking objects especially in videos captured by non-stationary cameras and for reasoning 

about occlusions between multiple moving objects. Based on the log-Euclidean Wiemenn metric on symmetric positive definite 

matrices, we propose an incremental log-Euclidean Wiemenn subspace learning algorithm in which covariance matrices of image 

features are mapped into a vector space with the log-Euclidean Wiemenn metric. Based on the subspace learning algorithm, we 

develop a log-Euclidean block-division appearance model which captures both the global and local spatial layout information about 

object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle  

Filtering-based Bayesian state inference. During tracking, incremental updating of the log-Euclidean block-division appearance 

model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in 

the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than 

six state-of-the-art tracking algorithms. 

 

---------------------------------------------------------------------***------------------------------------------------------------------------- 

1. INTRODUCTION 

Visual object tracking [3] is one of the most fundamental tasks 

in applications of video motion processing, analysis and data 

mining, such as human-computer interaction, visual 

surveillance, and virtual reality. Constructing an effective 

object appearance model to deal robustly with appearance 

variations is crucial for tracking objects especially in videos 

captured by moving cameras and for reasoning about 

occlusions between multiple moving objects. Object 

appearance models for visual tracking can be based on region 

color histograms, kernel density estimates, GMMs (Gaussian 

mixture models) [6], conditional random fields, or learnt 

subspaces [14], etc. Among these appearance models, 

subspace-based ones have attracted much attention, because of 

their robustness  

 

In subspace-based appearance models, the matrices of the pixel 

values in image regions are flattened (i.e. rewritten) into 

vectors, and global statistical information about the pixel values 

is obtained by PCA (principal component analysis) for the 

vectors. Black and Jepson [2] present a good subspace learning-

based tracking algorithm. A pre-trained, view-based eigenbasis 

representation is used for modeling appearance variations under 

the assumption that the different appearances are contained in a 

fixed subspace. However, the algorithm does not work well in 

cluttered scenes with large lighting changes, because the 

subspace constancy assumption fails. Ho et al. [11] present a 

nice visual tracking algorithm based on linear subspace 

learning. In each subspace update, the subspace is re-computed 

using only recent batches of the tracking results. However, 

using the means of the tracking results in a number of 

consecutive frames as the learning samples may lose accuracy, 

and computing the subspace using only the recent batches of 

the tracking results may result in tracker drift if large 

appearance changes occur. Skocaj and Leonardis [13] present a 

good weighted incremental PCA algorithm for subspace 

learning. Its limitation is that each update includes only one 

new sample, rather than multi-samples, and as a result it is 

necessary to update the subspace at every frame. Li [12] 

proposes a good incremental PCA algorithm for subspace 

learning. It can deal with multi-samples in each update. 

However it assumes that the mean vector of the vectors 

obtained by flattening the new arriving images is equal to the 

mean vector for the previous images. The subspace model 

cannot adapt to large changes in the mean. Ross and Lim et al. 

[14] propose a robust generalized tracking framework based on 

the incremental image-as-vector subspace learning method. It 

removes the assumption that the mean of the previous data is 

equal to the mean of the new data in [12]. However, it does not 

directly capture and model the spatial correlations between 

values of pixels in the tracked image region. Lee and Kriegman 

[9] present a nice online algorithm to incrementally learn a 

generic appearance model for video-based recognition and 



D.NEELIMA* et al.                                                                                                                                                                         ISSN: 2250–3676 

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY                   Volume-2, Issue-5, 1218 – 1231 

 

 

IJESAT | Sep-Oct 2012 

Available online @ http://www.ijesat.org                           1219 

tracking. Lim et al. [10] present an interesting human tracking 

framework using a robust identification of system dynamics 

and nonlinear dimension reduction techniques. Only image 

features are used in the algorithms in [9, 10], but the spatial 

correlations in the tracked image region are not modeled. 

Furthermore, they use a number of predefined prior models 

whose training requires a large number of samples. 

 

In summary, the general limitations of the current subspace-

based appearance models include the following: 

 They do not directly use object pixel values’ local 

relations which can be quantitatively represented by 

pixel intensity derivatives etc. These local relations 

are, to a large extent, invariant to complicated 

environmental changes. For example, variances in 

lighting can cause large changes in pixel values, while 

the changes in the spatial derivatives of the pixel 

intensities may be much less. 

 In applications to multi-object tracking with occlusion 

reasoning, it is difficult to update the object 

appearance models during occlusions. 

 

Proposed Work  

Wiemenn metrics : 

A covariance matrix descriptor [24, 29], which is obtained 

based on the features of intensity derivatives etc, captures the 

spatial correlations of the features extracted from an object 

region. The covariance matrix descriptor is robust to variations 

in illumination, viewpoint, and pose etc. The nonsingular 

covariance matrix is contained in a connected manifold of 

symmetric positive definite matrices. Statistics for covariance 

matrices of image features can be constructed using an 

appropriate Wiemenn metric. Researchers have applied 

Wiemenn metrics to model object appearances. Porikli et al.  

propose a Wiemenn metric-based object tracking method in 

which object appearances are represented using the covariance 

matrix of image features. Tuzel et al.  propose an algorithm for 

detecting people by classification on Wiemenn manifolds. 

Wiemenn metrics have been applied to the modeling of object 

motions using matrices in an affine group. Kwon et al. [61] 

explore particle filtering on the 2-D affine group for visual 

tracking. Porikli and Tuzel [62] propose a novel Lie group 

learning-based motion model for tracking combined with object 

detection. The algorithms in [24, 25] represent object 

appearances by points on a Wiemenn manifold and utilize an 

affine-invariant Wiemenn metric to calculate a Wiemenn mean 

for the data. There is no closed form solution for the Wiemenn 

mean. It is computed using an iterative numerical procedure. 

Arsigny et al. [28] propose the log-Euclidean Wiemenn metric 

for statistics on the manifold of symmetric positive definite 

matrices. This metric is simpler than the affine-invariant 

Wiemenn metric. In particular, the computation of a sample’s 

Wiemenn mean is more efficient than in the affine invariant 

case. Kwon et al. [61] propose a closed form approximation to 

the Wiemenn mean of a set of particle offsets. In this paper, we 

apply the log-Euclidean Wiemenn metric to represent object 

appearances and construct a new subspace-based appearance 

model for object tracking. 

 

Single Object tracking  

A number of algorithms focus on specific types of appearance 

changes. As change in illumination is the most common cause 

of object appearance variation, many algorithms focus on such 

changes. Hager and Belhumeur  propose a typical tracking 

algorithm which uses an extended gradient-based optical flow 

method to track objects under varying illuminations. Zhao et al. 

[22] present a fast differential EMD (Earth Mover’s Distance) 

tracking method which is robust to illumination changes. 

Silveira and Malis [17] present an image alignment algorithm 

to cope with generic illumination changes during tracking. 

Some algorithms focus on dealing with object appearance 

deformations. For example, Li et al. [8] use a generalized 

geometric transform to handle object deformation, articulated 

objects, and occlusions. Ilic and Fua [20] present a nonlinear 

beam model for tracking large appearance deformations. There 

exists work on dealing with appearance changes in scale and 

orientation. For example, Yilmaz [16] proposes an object 

tracking algorithm based on adaptively varying scale and 

orientation of a kernel. The above algorithms are robust to the 

specific appearance changes for which they are designed, but 

they are over-sensitive to other appearance changes. 

 

More attention has been paid to the construction of general 

appearance models which are adapted to a wide range of 

appearance variations [23,]. Black et al. [4] and Jepson et al. 

[5] employ mixture models to explicitly represent and recover 

object appearance changes during tracking. Zhou et al. [6] 

embed appearance models adaptive to various appearance 

changes into a particle filter to achieve visual object tracking. 

Yu and Wu [7] propose a spatial appearance model which 

captures non-rigid appearance variations efficiently. Yang et al. 

use negative data constraints and bottom-up pair-wise data 

constraints to dynamically adapt to the changes in the object 

appearance. Kwon and Lee  use a local patch-based appearance 

model to maintain relations between local patches by online 

updating. Mei and Ling  sparsely represent the object in the 

space spanned by target and trivial image templates. Babenko et 

al. [36] use a set of image patches to update a classifier-based 

appearance model. These general appearance models can 

adaptively handle a wide range of appearance changes. 

However, they are less robust to specific types of appearance 

changes than the algorithms which are designed for these 
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specific appearance changes  There are algorithms that use 

invariant image features or key points to implicitly represent 

object appearance. For example, Tran and Davis [21] propose 

robust regional affine invariant image features for visual 

tracking. Grabner et al. [18] describe key points for tracking 

using an online learning classifier. He et al.  track objects using 

the relations between local invariant feature motions and the 

object global motion. Ta et al.  track scale-invariant interest 

points without computing their descriptors. The affine-

invariance properties make these algorithms more robust to 

large local deformations and effective in tracking textured 

appearances. Partial occlusions can be dealt with by partial 

matching of key points. However, they are sensitive to large 

appearance changes and background noise. All of the 

aforementioned specific model-based methods, the general 

model-based methods, and the key-point-based methods share a 

problem, in that the appearance model is constructed using the 

values of the pixels in an image region, without any direct use 

of local relations between the values of neighboring pixels. 

 

Multi-object tracking 

There has been much work on tracking multi-objects using 

object appearance models in videos captured by stationary or 

non-stationary cameras. 

 

2.2.1. Multi-object tracking with stationary cameras 

For stationary cameras, background subtraction, image 

calibration and homography constraints between multi-cameras 

etc, are often employed to obtain prior information about the 

positions of moving objects Khan and Shah  use spatial 

information in a color-based appearance model to segment each 

person into several blobs. Occlusions are handled by keeping 

track of the visible blobs belonging to each person. Ishiguro et 

al.  classify the type of object motion using a few distinct 

motion models. A switching dynamic model is used in a 

number of object trackers. The algorithms in  depend on 

background subtraction. Zhao and Nevatia  adopt a 3D shape 

model as well as camera models to track people and handle 

occlusions. Mittal and Davis  use appearance models to detect 

people and an occlusion likelihood is applied to reason about 

occlusion relations between people. Joshi et al.  track a 3D 

object through significant occlusions by combining video 

sequences from multiple nearby cameras. The algorithms in 

[33, 42, 43] depend on a costly camera calibration. Fleuret et al.  

use multi-cameras to model positions of multi-objects during 

tracking. Their algorithm depends on a discrete occupancy grid, 

besides camera calibration. Khan and Shah  track multiple 

occluding people by localizing them on multiple scene planes. 

The algorithm depends on the planar homography occupancy 

constraint between multi-cameras. 

Although the above algorithms achieve good performances in 

multi-object tracking, the requirement for stationary cameras 

limits their applications. 

 

Multi-object tracking with non-stationary cameras 

For non-stationary cameras, background subtraction, 

calibration, and homography constraints cannot be used. As a 

result, multi-object tracking with non-stationary cameras is 

much more difficult than with stationary cameras. Wu and 

Nevatia [38, 39] use four detectors for parts of a human body 

and a combined human detector to produce observations during 

occlusions. Wu et al. [15] track two faces through occlusions 

using multi-view templates. Qu et al.  use a magnetic-inertia 

potential model to carry out the multi-object labeling. Yang et 

al. track multi-objects by finding the Nash equilibrium of a 

game. Jin and Mokhtarian  use the variational particle filter to 

track multi-objects. One limitation in current algorithms for 

tracking multi-objects in videos taken by non-stationary 

cameras is the assumption that the object appearance models 

are unchanged in the presence of occlusions. When there are 

large changes in object appearances during occlusions, the 

objects cannot be accurately tracked. In recent years, many 

detection-based tracking methods have been proposed for 

multi-pedestrians These methods firstly detect the pedestrians, 

and then assign the detection responses to the tracked 

trajectories using different data association strategies, such as 

cognitive feedback to visual odometry, min-cost flow networks 

the hypothesis selection the Hungarian algorithm and 

continuous segmentation The performance of these detection-

based tracking methods greatly depends on the accuracy of 

pedestrian detection. 

 

Incremental Log-Euclidean Wiemenn Subspace 

Learning 

First, the image covariance matrix descriptor and the Wiemenn 

geometry for symmetric positive definite matrices are briefly 

introduced for the convenience of readers. Then, the proposed 

incremental log-Euclidean Wiemenn subspace learning 

algorithm is described. 

 

3.1. Covariance matrix descriptor 

Let i f be a d-dimensional feature vector of pixel i in an image 

region. The vector i f is defined by (x, y,(Ej ) j�1,...,� ) where 

(x, y) are the pixel coordinates,   is the number of color 

channels in the image, and 
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intensity derivatives in the jth color channel, and the last term is 

the first-order gradient orientation. For a grayscale image, i f is 

a 9-dimensional feature vector (i.e. = 1 and d = 9 ). For a 

color image with three channels, i f is a 23-dimensional vector 

(i.e. = 3 and d= 23 ). The calculation of the intensity 

derivatives depends on the intensity values of the pixels 

neighboring to the pixel i. So the local relation between values 

of neighboring pixels is described by the intensity derivatives in 

the feature vector. 

 

Given an image region R, let L be the number of pixels in the 

region and let u be the mean of {fi}i=1……..n The image region R 

is represented using a d  * d covariance matrix R C [29] which 

is obtained by: 

     
The covariance matrix descriptor of a grayscale or color image 

region is a 9×9 or 23×23 symmetric matrix. The pixels' 

coordinates are involved in the computation of the covariance 

matrix in order to include the spatial information about the 

image region and the correlations between the positions of the 

pixels and the intensity derivatives into the covariance matrix. 

 

Wiemenn geometry for symmetric positive definite 

matrices 

 As discussed in Section 1.2, the nonsingular covariance matrix 

lies in a connected manifold of symmetric positive definite 

matrices. The Wiemenn geometry for symmetric positive 

definite matrices is available for calculating statistics of 

covariance matrices. The Wiemenn geometry depends on the 

Wiemenn metric which describes the distance relations between 

samples in the Wiemenn space and determines the computation 

of the Wiemenn mean. 

 

In the space of d * d symmetric positive definite matrices, the 

exponential and the logarithm of matrices are fundamental 

matrix operations. Given a symmetric positive definite matrix 

A, the SVD (singular value decomposition) for A ( A =U eUT ) 

produces the orthogonal matrix U, and the diagonal matrix 

 where 

 
are the eigenvalues of A. Then, the matrix exponential of A is 

defined by: 

 

The matrix logarithm of A is defined by 

 
where d I is the d * d identity matrix. 

 

The log-Euclidean Wiemenn metric was proposed [28, 61]. The 

symmetric positive definite matrices are a subset of a Lie 

group. Under the log-Euclidean Wiemenn metric, the tangent 

space at the identity element in the Lie group forms a Lie 

algebra which has a vector space structure [31]. In the Lie 

algebra, the mean � of matrix logarithms obtained using the 

matrix logarithmic operation in (4) is simply their arithmetic 

mean Given N symmetric positive definite matrices 1 { }N 

i i X � , the mean � in the Lie algebra is explicitly computed 

by 

 
The mean u can be mapped into the Lie group using the matrix 

exponential operation in (3), forming the Wiemenn mean U 
R 

in 

the Lie group. Corresponding to (5), u
R
 is obtained by 

 
 

Moreover, under the log-Euclidean Wiemenn metric, the 

distance between two points X and Y in the space of symmetric 

positive definite matrices is measured by|| log(x )- log(y ||) F  . 

The Wiemenn mean and distance under the log-Euclidean 

metric are simpler to compute than those under the affine-

invariance metric. In this paper, the log-Euclidean Wiemenn 

metric is used to calculate statistics of covariance matrices of 

image features 

 

Incremental log-Euclidean Wiemenn  

Subspace learning 

As the log-Euclidean Wiemenn space (i.e. the tangent space at 

the identity element of the space of symmetric positive definite 

matrices) is a vector space in which the mean and squared 

distance computations are simply linear arithmetic operations, 

linear subspace analysis can be performed in this space. We 

map covariance matrices into the log-Euclidean Wiemenn space 

to obtain log-Euclidean covariance matrices which are then 

unfolded into vectors. A linear subspace analysis of the vectors 

is then carried out. A covariance matrix of the image features 

inside an object block is used to represent this object block. A 

sequence of N images in which this object block exists yields N 

covariance matrices {C 
d
€ R

d×d
} t=1,2,..,N which constitute a 

covariance matrix sequence A€R
d×d×N

 . In order to ensure that C
t
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is not a singular matrix, we replace C
t
 with C

t
+€Id , where € is a 

very small positive constant and I is the d×d identity matrix. By 

the log-Euclidean mapping which is implemented using the 

matrix logarithmic operation in (4), we transform the 

covariance matrix sequence A into a log-Euclidean covariance 

matrix sequence:α=(log(c
1
),…,log(c

t
),…,log(c

N
)). We unfold 

the matrix log(C
t
 ) into a d

2
 -dimensional column vector 

Vt(1≤t≤ N) in either the row first order or the column first 

order, i.e. matrix log(C
t
) is represented by the column vector V

t
  

 

Then, the log-Euclidean unfolding matrix ɼ =(v
1
v

2
..v

t
..v

n
) € 

R
d2×N  

(the t-th column is V
t
) is obtained. The merit of unfolding 

log(C
t
 ) , in contrast to directly unfolding C

t
, is that the set of 

possible values of log(C
t
 ) forms a vector space in which classic 

vector space algorithms (e.g. PCA) can be used. 

 

We apply the SVD technique to find the dominant projection 

subspace of the column space of the log-Euclidean unfolding 

matrix ɼ . This subspace is incrementally updated when new 

data arrive. The mean vector µ is obtained by taking the mean 

of the column vectors in ɼ . We construct a matrix X whose 

columns are obtained by subtracting µ from each column vector 

in ɼ . The SVD for X is carried out: X =UDV
T
 , producing a d 2 

×d 2 matrix U, a D
2
× N matrix D, and an N × N matrix V, where 

U’s column vectors are the singular vectors of X, and D is a 

diagonal matrix containing the singular values. The first k ( k ≤ 

N ) largest singular values in D form the k ×k diagonal matrix 

D
k
 and the corresponding k columns in U form a d

2
×k matrix U

k
 

which defines the eigenbasis. The log-Euclidean Wiemenn 

subspace is represented by {µ,U
k
 ,D

k
}. The incremental SVD 

technique in [14, 32] is applied to incrementally update the log-

Euclidean Wiemenn subspace. Let  {µt-1,U
k
t-1,D

k
t-1 } be the 

previous log-Euclidean Wiemenn subspace at stage t-1. At 

stage t, a new covariance matrix sequence A*€R
d×d×N*

 which 

contains N* covariance matrices is added and the new sequence 

A*  is transformed into a log-Euclidean covariance matrix 

sequence which is then unfolded into a new log-Euclidean 

unfolding matrix ɼ*€R
d2*N*

 . Then, the new subspace 

 

at stage t is estimated using  and ɼ*. This 

incremental updating process is outlined as follows: 

 

Step 1: Update the mean vector: 

 
Where µ*is the mean column vector of  ɼ*, and ᴦ is a forgetting 

factor which is used to weight the data streams, in order that 

recent observations are given more weights than historical ones.  

Step 2: Let ɼ* have the zero mean: . 

Step 3: Construct the combined matrix   

 
where the operation “| ” merges its left and right matrices. 

Step 4: Compute the QR decomposition for the combined 

matrix:  , producing matrices Q and R. 

Step 5: Compute the SVD for matrix R: , producing 

matrices U, D, and V. 

Step 6: Compute singular vectors  and singular values by: 

 

Step 7: The k largest singular values in  are selected to form 

the diagonal matrix  , and the k columns corresponding to 

the elements in  are chosen from  to form  . 

 

The above subspace updating algorithm tracks the changes in 

the column space of the unfolding log-Euclidean matrix when 

new covariance matrix sequences emerge, and identifies the 

new dominant projection subspace. The vector space properties 

of the log-Euclidean Wiemenn space ensure the effectiveness of 

the identified dominant projection subspace. 

 

3.4. Likelihood evaluation 

The likelihood of a test sample is evaluated given the learned 

subspace. Let be the covariance matrix of features 

inside the test image region. Let  be the column vector 

obtained by unfolding . Given the learned log-

Euclidean Wiemenn subspace , the square of the 

Euclidean vector distance between  and is 

calculated as the subspace reconstruction error: 

 
where . is the Euclidean vector norm. The likelihood of given 

is evaluated by  

 
The smaller the , the larger the likelihood. 

 

4. Log-Euclidean Block-Division Appearance Model 

We divide the object appearance region into non-overlapping 

blocks whose log-Euclidean Wiemenn subspaces are learned 

and updated incrementally, in order to incorporate more spatial 

information into the appearance model. Local and global spatial 

filtering operations are used to tune the likelihoods of the 

blocks in order that local and global spatial correlations at the 

block level are contained in the appearance model. 
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4.1. Appearance block division 

Given an object appearance sequence , we divide 

the parallelogram appearance of an object in an image at time 

t into blocks. For each block

, the covariance matrix feature 

is extracted using Equations (1) and (2). Covariance 

matrices corresponding to block (i, j) constitute a 

covariance matrix sequence  . By the log-Euclidean 

mapping using (4), the covariance matrix sequence  is 

transformed into the log-Euclidean covariance matrix sequence 

which is then unfolded into a log-Euclidean matrix 

. Fig. 1 illustrates the division of an object 

appearance region into blocks whose covariance matrices are 

mapped into the log-Euclidean covariance matrices, where “O” 

is the center of the appearance region. A log-Euclidean 

subspace model is learned using our 

incremental log-Euclidean Wiemenn subspace learning 

algorithm. 

 

 
 

The square of the Euclidean vector distance between the 

block (i, j) of a test sample and the learned log-Euclidean 

subspace model is determined by (10), and then 

the likelihood  for block (i, j) in the test sample is estimated 

using (11). Finally, a matrix is obtained 

for all the blocks. 

 

4.2. Local spatial filtering 

In order to remedy occasional inaccurate estimation of the 

likelihoods for a very small fraction of the blocks, the matrix M 

is filtered to produce a new matrix  based 

on the prior knowledge that if the likelihoods of the blocks 

neighboring to a given block are large, then the likelihood of 

the given block is also likely to be large. This local spatial 

filtering is formulated as: 

 
where is the number of block (i, j)’s neighboring blocks 

whose likelihoods are not less is the number of block 

(i, j)’s neighboring blocks whose likelihoods are less than 

and  is a positive scaling factor. The exponential function in 

(12) is a local spatial filtering factor which measures the 

influence of the neighboring blocks on the given block. If is 

smaller than , the factor decreases the likelihood of block (i, 

j), and the larger the difference between and the more the 

likelihood is decreased; otherwise the likelihood of block (i, j) 

is increased. Although the values are from different 

subspace projections, they are comparable. The reasons for this 

include the following points: 

 As shown in (10) and (11), the likelihood is a 

similarity measurement which is unaffected by 

changes in the mean. 

 The sizes of all the blocks in an object appearance 

region are the same. 

 The dimensions of the covariance matrices describing 

the blocks are the same, and the definitions of each 

corresponding element in all the covariance matrices 

are the same. 

 The order in which the log-Euclidean covariance 

matrices are unfolded is the same in every case. 

 The dimensions of the dominant projection subspaces 

for all the blocks are the same. 

 

4.3. Global spatial filtering 

Global spatial filtering is carried out based on the prior 

knowledge that the blocks nearer to the center of the 

appearance region have more dependable and more stable 

likelihoods, and the likelihoods for boundary blocks are prone 

to be influenced by the exterior of the appearance region. A 

spatial Gaussian kernel is used to globally filter the matrix 

 to produce a new matrix   

 

where and are the positional coordinates of block (i, j), o 

x and o y are the positional coordinates of the center of the 

appearance region, and is a scaling factor. The nearer the 

block to the center of the appearance region, the more weight it 

is given. 
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4.4. Observation likelihood 

The overall likelihood overall p of a candidate object 

appearance region given the learned block-division appearance 

model positively relates to the product of all the corresponding 

block-specific likelihoods after the local and global spatial 

filtering: 

 

where the notation means that the left-hand side and the 

right-hand side of (14) either increase together or decrease 

together. The log version of Equation (14) is used to transform 

the product of likelihoods to the sum of log likelihoods: 

1 1 

 
 

4.5. Remark 

Local and global spatial correlations of object appearance 

blocks are represented via local and global spatial filtering. 

Local spatial relations between the values of the pixels in each 

block and the temporal relations between the image regions 

corresponding to the block in the image sequence are reflected 

in the log-Euclidean Wiemenn subspace of the block. This 

makes our appearance model robust to environmental changes. 

 

5. Single Object Tracking 

The object motion between two consecutive frames especially 

for videos captured by non-stationary cameras is usually 

modeled by affine warping which is defined by parameters 

, and  denote the x, y 

translations, the rotation angle, the scale, the aspect ratio, and 

the skew direction respectively [14]. The state of a tracked 

object in frame t is described by the affine motion parameters

. In the tracking process, an observation 

and a dynamic model are used to obtain the 

optimal object state in frame t given its state in frame t-1, where 

is the observation in frame t. In our algorithm, the 

observation model reflects the similarity between 

the image region specified by t X and the learned log-Euclidean 

block-division appearance model, and it is defined as:

,  is defined in 

Equations (14) and (15). A Gaussian distribution [14] with a 

diagonal covariance matrix with diagonal elements  

 
 

is employed to model the state transition distribution

. A standard particle filtering approach [3] is 

applied to estimate the optimal 

state (please refer to [14] for details). The image region 

associated with the optimal state is used to incrementally 

update the block-related log-Euclidean appearance model. 

During tracking, each image region is warped into a normalized 

rectangular region [14] using the estimated affine parameters. 

Covariance matrix computation, subspace projection, likelihood 

evaluation, subspace update, and smoothing with Gaussian 

kernel are carried out on the normalized rectangular region. 

 

6. Multi-Object Tracking with Occlusion Reasoning 

Our task of tracking multi-objects is, especially for videos 

captured by non-stationary cameras, to localize multiple 

moving objects even when there are occlusions between them, 

and to explicitly determine their occlusion relations. Our 

algorithm for multi-object tracking is an extension of our single 

object tracking algorithm. When there are no occlusions in the 

previous frame, the extent of any occlusion in the current frame 

is not large and the single object tracking algorithm is robust 

enough to track the objects accurately. So, under the condition 

that there are no occlusions in the previous frame, each of the 

objects in the current frame can be tracked using the single 

object tracking algorithm. If there is occlusion in the previous 

frame, then each object is tracked using one particle filter as 

before, except that the blocks with large appearance changes do 

not take part in the likelihood evaluation, and the appearance 

subspaces of these blocks are unchanged, while those for the 

remaining blocks are updated in the current frame. Then, the 

dynamical model and the proposal density function in our 

multi-object tracking algorithm are the same as those used in 

single object tracking. The observation model and the 

appearance updating model for multi-object tracking are 

designed to handle occlusions, and are of course different from 

those used in the single object tracking algorithm. In the 

following, we describe occlusion detection, observation 

likelihood evaluation during occlusion, appearance model 

updating during occlusion, occlusion reasoning, and appearance 

and disappearance handling. 

 

6.1. Occlusion detection 

Occlusion existence is deduced from the tracking results. Given 

the optimal state of an object, the object is represented by a 

parallelogram which is determined by its center coordinates, 

height, width, and skew angle. If parallelograms of two objects 

intersect, then there is an occlusion between the two objects. 
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6.2. Observation likelihood during occlusions 

If a block is occluded, then the subspace reconstruction error 

(10) of its log-Euclidean unfolded covariance is extremely high 

due to drastic appearance changes resulting from the occlusion. 

The effects of occlusion on the reconstruction errors are 

illustrated in Fig. 2, where (a) shows an exemplar video frame 

in which the bottom part of a girl’s face is occluded by a man’s 

face, and (b) shows the reconstruction errors of blocks of the 

girl’s face. As shown in (b), blocks corresponding to the 

occluded part of the girl’s face have much larger reconstruction 

errors than the un-occluded blocks. Only blocks with 

reconstruction errors less than a given threshold  

are used to evaluate the likelihood. Equation (15) is replaced 

by: 

 
where Ω is the set of blocks with reconstruction errors less than 

 and Ω is the number of blocks in Ω. 

 

6.3. Appearance model updating during occlusions 

If the appearance variations caused by large occlusions are 

learnt by the appearance model, large appearance errors from 

occluded blocks may result in inaccurate or incorrect tracking 

results. During occlusions, we only update the subspaces for 

blocks whose reconstruction errors are less than the threshold 

 . The subspaces for blocks whose reconstruction 

errors exceed the threshold remain unchanged. In this way, the 

appearance variations in blocks which are not occluded are 

learned effectively. As a result, the appearance model can be 

updated even in the presence of occlusions. 

 

6.4. Occlusion reasoning 

The task of occlusion reasoning is to determine the occlusion 

relations between objects. A number of sophisticated 

probabilistic mechanisms have been developed for occlusion 

reasoning. For example, Sudderth et al. [63] augment a 

nonparametric belief propagation algorithm to infer variables of 

self-occlusions between the fingers of a hand. Zhang et al. [64] 

handle long-term occlusions by adding occlusion nodes and 

constraints to a network which describes the data associations. 

Wang et al. [65] carry out object tracking with occlusion 

reasoning using rigorous visibility modeling within a Markov 

random field. Herbst et al. [66] reason about the depth ordering 

of objects in a scene and their occlusion relations. Gay-Bellile 

et al. [67] construct a probability self-occlusion map to carry 

out image-based non-rigid registration. However, the current 

probabilistic mechanisms for occlusion reasoning are very 

complicated. In practice, assumptions or simplifications are 

always utilized to reduce the search space. 

We found that, given the states of the objects, their occlusion 

relations are fixed. So, the occlusion relations between objects 

are dependent on the current states of the objects, and 

independent of their previous occlusion relations (their previous 

occlusion relations depend on their previous states). Instead of 

sophisticated probabilistic mechanisms, we propose a simple 

and intuitive mechanism which deduces the occlusion relations 

from the current states of the objects and the current 

observations, using the observation model which corresponds to 

subspace reconstruction errors. We utilize variations of 

reconstruction errors of blocks to find which objects are 

occluded. When it is detected that two objects a and b are 

involved in occlusion, the overlapped region between the 

parallelograms corresponding to these two objects is 

segmented. For each of these two parallelograms, the blocks 

within this overlapped region and the blocks overlapped with 

this region are found. Let be, respectively, the 

average reconstruction errors of such overlapped blocks in 

objects a and b. Let be, respectively, the 

average reconstruction errors of all the blocks in objects a and 

b. Let  represent the occlusion relation between objects a 

and b: 

 
 

 

The occlusion relation between objects a and b at frame t is 

determined by 

 
 

6.5. Appearance and disappearance 

We handle the appearance and disappearance of objects for 

both stationary and non-stationary cameras. For videos taken by 

stationary cameras, background subtraction is used to extract 

motion regions. The extracted motion regions in the current 

frame are compared with the motion regions in the previous 

frame according to their positions and appearances. If the 

current frame contains a motion region which does not 

correspond to any motion region in the previous frame, then a 

new object is detected as a tracked object. The appearance 

model for the object is initialized according to the new motion 

region. A particle filter is initialized according to a prior 

probability distribution on the state vector of the new tracked 

object and the prior distribution can be assumed to be a 
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Gaussian distribution. If a motion region gradually becomes 

smaller to the point where it can be ignored, then object 

disappearance occurs. The particle filter corresponding to the 

object is removed. For videos taken by non-stationary cameras, 

object detection methods should be introduced for handling 

object entering. There are a number of face or pedestrian 

detection algorithms [35, 57, 58, 59, 60], with low 

computational complexity. However, for these algorithms, 

mistaken detections are frequent. In this paper, we use the 

estimated optical flows with ego-motion compensation to find 

motion regions in which pixels have not only large optical flow 

magnitudes, but also coherent optical flow directions. 

Candidate motion regions are defined by moving a rectangle 

over the image and changing its size [19]. 

 

However, the found motion regions are usually inaccurate. 

Then, we use the boundaries of these detected motion regions 

as the objects’ initial contours which are then evolved using the 

region-based level set contour evolution algorithm in [19] to 

obtain the final object contours. The region-based contour 

algorithm can evolve a simple and rough initial contour to fit 

closely the edge of the object. We detect objects in the 

bounding boxes of the contours. In this way, objects, such as 

faces [35], can be accurately detected and located. The optical 

flow estimation is slow. We make some assumptions to 

increase the speed. For example, we assume that the motion 

regions corresponding to object entering are connected with the 

image boundaries. In this way, the area that is required to 

search for the new motion regions is reduced. Object 

disappearance for videos taken by non-stationary cameras is 

handled by checking the reconstruction errors. If the 

reconstruction error of the object appearance gradually becomes 

larger and there is no other object which occludes the object, 

then it is determined that the object is disappearing. 

 

6.6. Remark and extension 

Traditional centralized methods for multi-object tracking with 

occlusion handling carry out particle filtering in a joint state 

space for all the objects, i.e. the state vectors of all the objects 

are concatenated into a vector, and a particle is defined for the 

objects. Due to the high dimension of the joint state vector, the 

computational cost is very high. Our algorithm handles 

occlusions according to the reconstruction errors in object 

appearance blocks. This ensures that our algorithm can track 

individual objects in their own state spaces during occlusions, 

i.e. there is one particle filter for each object. This makes the 

state inference more computationally efficient, in contrast to 

centralized particle filters. Our method for occlusion detection 

and handling at the block level can be used for single object 

tracking when the tracked object is occluded by un-tracked 

moving objects or scene elements, e.g. static objects: block-

wise appearance outliers of the object are monitored and the 

subspaces of the un-occluded blocks are updated online. 

Although our single object tracking algorithm without special 

occlusion handling is robust to partial occlusions and fast 

illumination changes due to the log-Euclidean Wiemenn 

appearance model, introducing occlusion detection and 

handling into single object tracking can increase the tracking 

accuracy during occlusions or fast illumination changes while 

more runtime is required. 

 

7. Experiments 

In order to evaluate the performance of the proposed tracking 

algorithms, experiments were carried out using Matlab on the 

Windows XP platform. The experiments covered 10 

challenging videos, five of which were taken by non-stationary 

cameras, and five of which were taken by stationary cameras. 

The experiments on these videos consisted of four face tracking 

examples and six examples of tracking pedestrians. For the face 

tracking examples, tracking was initialized using the face 

detection algorithm [35]. For the videos captured by stationary 

cameras, tracking was initialized using background subtraction 

[34]. For tracking a pedestrian in the video taken by a non-

stationary camera, tracking was initialized using optical flow 

region analysis [19]. The tuning parameters in our algorithm are 

set empirically in the experiments. For example, the number of 

blocks was chosen to maintain both the accuracy and 

robustness of the tracking. If a larger number of blocks is used, 

the object can be tracked more accurately when the changes in 

the object appearance are small or moderate; but when there are 

large appearance changes, the tracker is more likely to drift. In 

our experiments, we found that when each object region was 

uniformly divided into 36 blocks, the objects in all the 

examples are successfully and accurately tracked. But when 

fewer blocks are used, some results with unacceptable accuracy 

are obtained. So, it is appropriate to set the number of blocks 

equal to 36. We set the dimension k of the subspace according 

to the reconstruction quality which is defined as the ratio of the 

sum of the k largest singular values in Dt’ defined in (9) to the 

sum of all the singular values in Dt’ . The number k is the least 

number such that the reconstruction quality is above 98%. The 

number of particles was set to 200 for each object in the 

absence of occlusions, and set to 500 in the presence of 

occlusions. It is found that when fewer particles are used, there 

are frames for which the results are obviously inaccurate, and 

the runtime is only slightly decreased. The log-Euclidean 

block-division appearance model was updated every three 

frames. The six diagonal elements 

  in the dynamic model 

were given the values of 52, 52, 0.032, 0.032, 0.0052 and 

0.0012, respectively. The forgetting factor ᴦ in (7), (8), and (9) 

was set to 0.99. The factor  in (12) was set to 8. The factor 
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in (13) was set to 3.9. The occlusion threshold for an object 

at the current frame is set to three times the mean of the 

reconstruction errors of its un-occluded blocks in the previous 

three frames. 

 In the experiments, we compared our single object 

tracking algorithm with the following five state-of-the-art 

representative and typical tracking algorithms: 

 The algorithm based on the affine-invariant Wiemenn 

metric [24]: a baseline for our algorithm. 

 The vector subspace-based algorithm [14]: also a 

baseline for our algorithm. 

 Jepson et al.’s algorithm [5]: the most typical one 

which learns the appearance model online. 

 Yu and Wu’s algorithm [7]: the most typical one for 

part-based appearance modeling for visual tracking, in 

contrast to the above competing algorithms which use 

holistic appearance representations. 

 The multiple instance learning (MIL)-based algorithm 

[36]: the typical one which can deal effectively with 

accumulation of small tracking inaccuracies in 

consecutive frames. 

The algorithm based on the affine-invariant Wiemenn metric 

[24] was extended to track multi-objects with occlusion 

reasoning according to the principles of handling occlusions in 

our multi-object tracking algorithm. Then, our multi-object 

tracking algorithm was compared with the extended algorithm. 

We also compared our multi-object tracking algorithm with 

Yang et al.’s algorithm [55] which is a typical appearance-

based multi-object tracking algorithm. 

 

7.1. Example  

In which a man moves in a dark outdoor scene with drastically 

varying lighting conditions. In this example, the face of the man 

is tracked. Fig. 3 shows the results for this example. It is shown 

that our algorithm tracks the object successfully in all the 497 

frames even in poor lighting conditions. In a few frames in 

which the face moves rapidly, there are some deviations 

between the localized positions of the person and the true 

positions. In comparison, the algorithm based on the affine-

invariant Wiemenn metric loses the track in many frames. The 

tracking using the vector subspace-based algorithm breaks 

down after frame 300 when there is a large variation in 

illumination and a pose change. Jepson’s algorithm loses track 

from frame 316 to frame 372, after which the track is 

recovered. It loses the track again from frame 465 onwards. 

Yu’s algorithm overall continuously tracks the face, but in a 

number of frames the results are inaccurate. The MIL-based 

algorithm loses the track from frame 195 onwards, because its 

use of Haar like features makes it sensitive to changes in 

illumination. In each frame, we manually label four benchmark 

points corresponding to the four corners of the image region of 

the face. These benchmark points characterize the location of 

the face and are used to evaluate the accuracy of the results of 

the tracking algorithms. During the tracking, four validation 

points corresponding to the four benchmark points were 

obtained in each frame according to the object’s affine motion 

parameters. In each frame, the location deviation (also called 

the tracking error) between the validation points and the 

benchmark points is defined as the average of the pixel 

distances between each validation point and its corresponding 

benchmark point. This tracking error is a quantitative measure 

of the tracking accuracy. Fig. 4 shows the tracking error curves 

of our algorithm and the competing algorithms. It is seen that 

the tracking errors of our algorithm are lower than the errors of 

the competing algorithms. It is noted that Jepson’s algorithm 

and Yu’s algorithm are much faster than ours, and the other 

competing algorithms have similar runtimes to ours. As the 

affine parameters used to represent the state of the object in our 

algorithm are not used in the MIL-based algorithm, a 

quantitative accuracy comparison between our algorithm and 

the MIL-based algorithm is omitted. 

 

 
 

Fig. 3. Example 1: Tracking a face with drastic illumination 

changes: From left to right, the frame numbers are 140, 150, 

158, 174, and 192, respectively: the first, second, third, fourth, 

fifth and sixth rows are, respectively, the results from our 

algorithm, the algorithm based on the affine-invariant metric, 

the vector subspace-based algorithm, Jepson’s algorithm, Yu’s 

algorithm, and the MIL-based algorithm. 
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Fig. 5 shows the results obtained by omitting non-overlapping 

blocks, or local and global filtering from our algorithm. Fig. 6 

shows tracking error curves with and without non-overlapping 

blocks or local and global filtering. The mean errors without 

non-overlapping blocks, with non-overlapping blocks but 

without local and global filtering, and with non-overlapping 

blocks and local and global filtering, are 15.25, 7.47, and 5.29, 

respectively. It is apparent that the tracking results without non-

overlapping blocks are much less accurate than the results with 

non-overlapping blocks but without local and global 

 

 
Fig. 4. The quantitative comparison between our algorithm and 

the competing algorithms for Example 1: Our algorithm 

corresponds to the cyan curve, the algorithm based on the 

affine-invariant Wiemenn metric the red curve, the vector 

subspace-based algorithm the black curve, Jepson’s algorithm 

the blue curve, and Yu’s algorithm the magenta curve.filtering, 

which are overall less accurate than the results with non-

overlapping blocks and local and global filtering. So, the 

division of the object appearance into blocks is more important 

than the local and global filtering. 

 

 
 

Fig. 5. The results for Example 1 without non-overlapping 

blocks, or local and global filtering: The first row shows the 

results without non-overlapping blocks; The second row shows 

the results with non-overlapping blocks but without local and 

global filtering. 

 

 
Fig. 6. The quantitative comparison results for Example 1 with 

and without non-overlapping blocks, or local and global 

filtering: the red, black and blue curves correspond, 

respectively, to the results without non-overlapping blocks, the 

results with non-overlapping blocks but without local and 

global filtering, and the results with non-overlapping blocks 

and local and global filtering. 

 

 
 

Fig. 7. Example 1: Tracking the face of the boy using occlusion 

handling. 

 

As stated in Section 6.6, our block-wise occlusion monitoring 

method can trigger in case of fast illumination changes. Fig. 7 

shows the results of tracking the face using our occlusion 

handling method. It is seen our occlusion monitoring method 

successfully handles fast illumination changes throughout the 

video. Fig. 8 quantitatively compares the results with and 

without occlusion monitoring. The mean tracking error without 

occlusion handling is 5.31 pixels per frame and that with 

occlusion handling is 4.86 pixels per frame. Occlusion handling 

obtains more accurate results. 
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Fig. 8. The quantitative comparison between the results with 

and without occlusion handling for Example 1: the green and 

red curves correspond to the results with and without occlusion 

handling, respectively 

 

CONCLUSION 

In this paper, we have proposed an incremental log-Euclidean 

Wiemenn subspace learning algorithm in which under the log-

Euclidean Wiemenn metric, image feature covariance matrices 

which directly describe spatial relations between pixel values 

are mapped into a vector space. The resulting linear subspace 

analysis is very effective in retaining the information on the 

covariance matrices. Furthermore, we have constructed a log-

Euclidean block-division appearance model which captures the 

local and global spatial layout information about object 

appearance. This appearance model ensures that our single 

object tracking algorithm can adapt to large appearance 

changes, and our algorithm for tracking multi-objects with 

occlusion reasoning can update the appearance models in the 

presence of occlusions. Experimental results have demonstrated 

that compared with six state-of-art tracking algorithms, our 

tracking algorithm obtains more accurate tracking results when 

there are large variations in illumination, small objects, pose 

variations, and occlusions etc. 
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